Added Note: Is it time to review this post, what is it we can learn? look at the comments, do a google search on this topic and see who all has joined in on the conversation.. I am proud to be a skeptic…
Rifles, Ballistics, firearms in general.. we DIYers are fascinated by the science that surrounds them. Copper units of pressure, stabilizing a bullet in flight and far more. There’s so much to learn from firearms.
Come this Wednesday night one of our own picks on Remington over a trigger assembly he’s found fault with for years. Will Remington steam roller Jack in Court, or will Jack successfully prove that the Remington 700 trigger has a design problem?
Now I know my first thought was I would never want to be used by the anti gun lobby, and therefore I’d never get close to a case like this IF I were a gun smith of some acclaim.
The question becomes, if there is a safety issue, how does it ever get fixed? Would the average Gun Smith blame every accidental miss fire on the person handling the rifle? For those of us who know Jack, we know his thinking… “no firearm should discharge unless you pull the trigger”, there’s plenty of evidence that there have been trigger and safety designs that do just that every time, the firearm doesn’t fire unless you pull the trigger.
You might remember that Jack wrote a good article about his experience living at Magic Hot Springs with a Listgen 6/1 ST5. He laid out the case for small power, and how living at Magic Hot Springs would break most banks prior to installing the 6/1.
https://www.utterpower.com/magic_springs.htm
https://www.utterpower.com/jack_belk.htm
George B.
scroll down to the bottom for comments…..
Added Notes:
Here’s an overview of the trigger assembly, I’m no gun smith, so do assume I am only curious about this case. I wouldn’t dare trust a trigger I adjusted.. yet alone attempt to tell you what a safe design looks like. As I read the following, I think about trouble shooting in general. If you are as old as I am.. you know you must understand how something works before you can fix it. In this case, I think we need understand this trigger assembly and how it works before we attempt to form an opinion one way or the other. scroll down for another article added, comments made about this page at the far bottom.
REMINGTON-WALKER TRIGGER EXPLANATION
©copyright 2010, H.J. Belk
INTRODUCTION–
This paper is published as a public service aimed primarily at gunsmiths and advanced amateur gun enthusiasts that have a curiosity about the fascinating mechanics involved in modern firearms and are willing to look at very easy facts and features and figure out how it works. Remington-Walker triggers are more complicated than pliers, but not by much. Much of their mystery remains because the design is so like others in appearance, but totally different in operation.
The author has a life-long love affair and intense interest in what makes guns do what they do and how to make them do it better by design instead of blind luck. For the past seventeen years, much of the gun study has been as a result of law suits involving firearms and their design. It has been an enlightening experience that needs to be talked about. I’m in no way picking on Remington, but they’re in the spot light right now and actual facts are hard to come by on this subject. I’ve testified as an expert in Federal and other courts in civil and criminal matters in several states. My testimony has never been disallowed.
There is a difference between studying design and function by taking things apart and comparing what is seen by a parts diagram and testifying to how the gun operates to a great degree of mechanical certainty. When testifying of how something happens, certainty is essential. The rule of ‘follow the forces’ in gunsmithing is a good one. Once forces and pivots are seen and understood, the entire trigger is no longer a mystery. Just because it looks like any other trigger is no cause to think it operates like any other. It does not.
Attacks on the author by those that have not read this paper while actually examining a Remington-Walker trigger and the patent language pertaining to it will be happily ignored. Facts are facts and I’m trying to explain how to actually see those facts so you can come to your own conclusions based on mechanical knowledge instead of what was heard or said somewhere.
Questions on this paper are gladly answered but preferably in the public forum. The purpose is, after all, the education of a subject out of normal vision and experience of the shooter. If you want to talk politics or personal appearance or what you think of me or something else, please move it to another thread. This discussion is about one particular family of triggers that are present on more than seven million rifles spread all over the world.
Remington-Walker-Haskell trigger—
Please reference U.S.Pat. 2,514,981 That’s the trigger we’re talking about and it’s different than all others. There are pdf download patents available without charge several places on the internet.
To fully understand the operations and failures of the Remington-Walker trigger, the drawings and the text of the patent are MOST important. Print it out, if possible, for ready reference. It is the heart of the Remington ‘problem’ in 600 and 700 series triggers. This applies to all models but the M-788 which has a one piece trigger design in it.
The patent drawings are probably different than the trigger you see in your rifle. Over the decades many changes have been made to the various parts. I’ll explain the differences and what effect they have on operation and safety, later, but here’s a rough test to see which ‘generation’ trigger is in your rifle.
Remove the bolt and look down in the rear tang at the sear. If there is a stack of four parts, the outer housing and the two sears, it’s an early gun and should be treated with special care. The more modern sears are chromed sintered metal and of one piece.
The second test is to see if it has a bolt lock safety. Does the bolt open easily with safety ON? If so it was made after 1982. If you have a bolt lock gun, cut the lug off so it’s defeated. Just grind off #32 Fig 1 of the patent.
If the face of your trigger is smooth without the ridges commonly found on the face of triggers, it is a new X-MarkPro trigger that has a solid trigger and no connector. It was made after October of 2006. I have closely examined several X-Mark Pro triggers and their prototypes. It is as good as any trigger on the market and better than many. It’s just 60 years late.
With those comments I’ll dive into a subject I extensively covered on this site and others ten years ago.
The fact that the plane you’re flying in has not crashed is no evidence that crashes don’t occur.
That pretty well sums up anecdotal evidence. Just because your rifle’s trigger has never, ever done anything but what you directed it to do is no evidence of the lack of a defect. The defect is there and it’s unpredictable and many times it won’t repeat no matter what you do. The scientific method depends on masses of information when the occurrence is rare and non-repeatable. There are thousands of people that have written letters of complaints that describe the exact same failures time after time. The defect is in the trigger and just because it works now does not mean it won’t fail in the future.
Basics–
The Remington-Walker trigger is an “Over-ride” trigger system. That means it’s not a “Direct-acting” trigger that pulls the sear out of position with the cocking piece (like M-98, 03, etc). An over-ride trigger props up the sear and is not attached to it. Winchester started the over-ride, or ‘negative angle’ trigger in hunting rifles in the M-70 in 1937. Sako made an override trigger contained in a housing that was then fastened to the action. Many custom trigger makers copied it just after the War. Timney, Dayton-Traister, Canjar, Jewel, Ruger M77, A-bolts, Tikka – just name a modern bolt action rifle and it’ll have an over-ride trigger in it. They are crisp and allow very good trigger pulls. They are the ‘standard’ in modern bolt action rifles.
The Remington-Walker is different than all those others and patent #2,514,981 tells us why that is.
Figure 1 of the patent shows a jumble parts that usually makes people slightly ill to try to cipher it out. Here’s a better representation with the parts labeled in common language and direction of movements given to hopefully, though crudely, better ‘see’ what’s inside.
Notice the area inside the red circle. When the bolt closes, the cocking piece pushes the rear of the sear downward so that the sear rests on the rear corner of the connector. That overlap is the ‘sear engagement’. Its usually .018 to .025 inches which means the rifle is prevented from firing by about .004 square inch of steel, at most. In this position, the cocking piece is held by the sear, which is pressing down on the top of the trigger-connector. When the trigger moves forward the sear falls and the firing pin rushes forward to fire the rifle.
The safety cam lifts the sear off the top of the trigger-connector and locks the sear into the cocking piece so the gun can’t fire, but the trigger and connector are free to move. When the safety is rotated to OFF, the sear comes back down on the trigger-connector. This is a simple ‘Sako-style’, modular, over-ride trigger. The fact that the sear is hinged at the front instead of the back makes no practical difference. It can be seen by this simple motion of the safety and sear that the trigger and connector HAVE to come back to the full rear position for there to be security in the sear / trigger engagement.
In its simplest form, an over-ride trigger is two levers and two springs and two retaining pins. The M-70 is exactly that, plus an over-travel adjustment. The ‘Sako style’ over-ride triggers, contained in a housing having more parts, operate exactly the same—The trigger props up the sear and when the sear is allowed to fall, the gun fires.
In the Remington-Walker trigger, the safety ‘problem’ is NOT in the safety. This is a common misconception but it’s important to realize the Remington-Walker safety is not the cause of firing without a trigger pull. The safety could be called a ‘victim of circumstance’ in that it is converted to a trigger without the shooter’s knowledge.
How does it do that?
Let’s take a look at some patent language, shall we. Go to page 3, beginning on line 60 and read through to Page 4, line 61.
This description has several parts and pieces that need examination. It starts by telling how the connector (you’ll hear that word a lot) is not fastened inside the trigger housing, but ‘flexibly mounted’ in it. That means it’s loose on the trigger but for the trigger return spring pushing against it. A lot of the verbiage describes nifty ways of making the housing out of a stamping, but that was discontinued many years ago.
Page 4, line 22 through 40 is where it gets interesting to an experienced shooter.
“This stop screw provides an adjustment to positively stop trigger movement just as the sear is released and makes possible the complete elimination of undesirable trigger slap or overtravel.”
Page 4, line 40 starts a section that needs to be examined very closely:
“ If we examine the functioning of the unit, we will observe that the trigger and connector move as a unit,…”
and line 44,
“At this point the trigger stops but the connector ….”
Hold on, right there. Let’s read that again and make SURE you know what that says, then try it on your UNLOADED rifle.
Does the trigger stop it’s motion as the sear drops off of it? If it does, the patent makes sense. The operation of the connector would shorten the overall travel of the trigger to only the amount of the sear engagement and nothing more. But, if the trigger is going to travel until it hits the stop screw anyway, why complicate the trigger with a part that has no benefits? The amount of motion in the trigger is as little as it can be made if the corners are square and the sear falls cleanly from the corner of the trigger.
EXPERIMENT–
Take any unloaded, bolt action rifle with an over-ride trigger in it (anything bolt-action and civilian). With the rifle uncocked and bolt closed, carefully pull the trigger several times and note how much movement there is. It’s usually about .020 inch or about two thirds the thickness of a credit card. What the patent is saying is that the trigger does not move that .020 after the sear trips. It says the trigger stops when the sear trips. That, of course is demonstrably not true. Try it on any rifle. The trigger ‘follows through’ as the gun fires. You can’t stop it short of the stop if you wanted to. So, what are we left with?
Using .020 inch as the sear-trigger engagement figure and assuming the pivot pin is near the center of the trigger, it can be said the trigger pull is .020”, plus a clearance after disengagement to allow the sear to fall without touching anything. Call the total trigger movement .030 inch when the trigger pull plus overtravel is figured. By actual experiment you can see that the movement of a Remington-Walker trigger is exactly the same as any other trigger having the same sear engagement and the nonsense on Page 4, line 30 does not apply.
“…for it is not practicably possible to produce and maintain absolutely sharp square corners on the engaging surfaces of the sear and conventional trigger.”
Nobody says that an absolutely sharp square corner is needed to make a good trigger, and everybody but Remington has done so.
So, why the connector? If the connector really doesn’t do anything, why have it? Is it cheaper than say a heat-treated trigger by any other maker? Possibly, but others have solid triggers.
Does it, in ANY way, make the trigger a ‘better’ trigger? No, it’s just different. It does not reduce the trigger movement at all, but it’s different simply because it’s more complicated.
It seems to be the perfect example of a new design patent as the result of one little change to something invented prior. In this case, the improvements and attributes said to be present in the Remington-Walker don’t perform the function claimed in the patent. The change in the trigger design was for the purposed of a patent and not for performance.
Operation–
An over-ride trigger must, absolutely MUST, return to full position after every shot. The trigger return spring is there to do that job. That’s the spring you feel in the trigger when the rifle is not cocked. A trigger that does not return to the proper position reliably under the sear is more likely to cause the gun to fire without the trigger being pulled. That is simple physics and easily set up in demonstration. “Return to battery” for internal trigger parts is part and parcel of over-ride trigger operations.
The Remington-Walker’s ‘trigger’ is not the piece you put your finger on. The part that acts as the trigger under the sear is actually the connector which is ‘flexibly connected’ to the trigger body. The trigger return spring pushes the connector which then pushes the trigger body into position under the sear. The connector offers a complication that is not needed in the trigger. The addition of the connector only adds to the complexity of what is a very simple and amazingly reliable mechanism when its parts are limited to only what’s necessary to do the job.
Is a mechanism that’s called upon to return one lever with one spring more reliable than a spring pushing on an intermediary part and then the lever? Of course it is. The fewer parts, the simpler the mechanism, especially when dealing with simple levers.
With the re-positioning of the trigger-connector required after each shot, in the presence of recoil and powder residue and debris, the answer becomes even more certain. More parts means more complications without benefits.
HOW DO THEY FAIL?
Remington-Walker triggers are subject to several failures all due to displacements of the connector inside the trigger housing. These failures are common enough to have acronyms for them:
FSR– Fire on Safety Release.
How many people have pulled the trigger with the safety ON just to ‘test’ it out? I know of hunter safety instructors that teach it as a good thing to do every time the safety is applied. How many times is the trigger pulled while the safety is ON but not by the shooter? That’s probably a rarer occurrence but it does happen, that’s why manual safeties and trigger guards are put on guns.
Should the trigger be pulled on a Remington-Walker, and the connector become displaced so that it does not return with the trigger, the shooter feels the trigger return not knowing the connector did not follow along with the trigger to its proper place under the sear. In that position, the safety lever is holding up the sear and the rifle fires when the safety is pushed to OFF.
Prior to 1982, Remington rifles had a ‘bolt lock’ incorporated with the safety lever. (#32 Fig. 1) That bolt lock means the gun has to be taken off safe in order to unload it. FSR is one of the most common failures and the one that’s caused the most damage, injury and deaths. In simple terms it’s the improper displacement of the connector during the time the gun is ON safe. The ‘trigger’ is in the proper position, but the connector is not.
JO—Jar Off
When the gun fails due to impact it is said to have ‘jarred off’. Precarious ‘perching’ of the sear on the very corner or edge of the connector causes a fragile connection that can fail with bumping or jarring. In all other over-ride triggers, this displacement is usually caused by improper adjustment of the sear engagement screw . A Remington-Walker can change that engagement dimension and drastically change the security of the system by simply capturing debris between two internal parts. It ‘adjusts’ itself to little engagement and just as quickly adjusts the other way as the debris is dislodged by the recoil of the shot.
FBO and FBC–
These refer to firing without a pull of the trigger when the bolt is opened or closed. This is a variation of a common ‘Jar Off’ caused by vibration of the bolt closing (easy to reproduce by mal-adjusting the sear engagement.) or the change in alignment of parts as the bolt handle is touched to open it. In both instances the most common cause is a connector being held out of position by debris, dirt, powder flakes, dried grease on any number of things that trickle through the mechanism as it’s fired and stored. Fire on bolt close many times happens on the first loading after long storage. By design, the connector is pushed away from the trigger body when the rifle is in the fired position. That gives a chance for lint and debris to collect in sufficient quantity to alter the sear engagement the first few times the gun is then ‘exercised’.
Can any of these failures occur in other triggers? Yes.
The operation of over-ride triggers, whether Jewel, Timney, Canjar, or Remington-Walker is the same. The trigger is a prop for the sear. If it doesn’t properly support the sear under knocks and bumps a hunting rifle takes in doing its job, a discharge without a trigger pull can happen. The point is that the Remington-Walker has an extra ‘trigger’ that does NOT do the job it was patented to do and it’s much more subject to become displaced than competing ‘solid’ triggers. Why is that connector in there?
Over-ride triggers, by design, are very fragile things and scary to think about when you also consider the risk involved. That they work well enough for a hunting rifle could have been disputed before the M-70 made it a fact in 1937. What had been known as a ‘target’ trigger became mainstream and a hunting trigger.
The M-70 has two parts pinned in a milled recess in the bottom of the receiver which keeps side to side motion to a minimum so the two parts are held closely in alignment with each other and the cocking piece. The M-70 trigger scrapes the sear surface clean into a trash trench cut in the trigger on each shot. There is no housing to catch debris. The sear comes up through a port in the rear tang which allows very little contamination of the trigger parts. The sear spring is nearly sealed and debris is blocked from entry into critical areas. ‘Bad’ M-70 triggers are the result of bad gunsmithing and usually found on match rifles. Otherwise they’re very reliable and after a period of ‘break-in’ are usually very ‘good’ triggers.
Points to consider—
The Remington-Walker has an extra part that’s free to move around inside the housing. That’s the connector.
The connector is displaced from the front of the trigger on every shot due to the angularity of the back edge of the connector which is impacted by the corner of the sear as it falls. That is by design. Page 4, lines 46-50.
“…and, as the sear is cammed down, the radii existing on the points of the connector and the sear cause the connector to be cammed forwardly and completely clear of the sear step. …”
In a mechanism subject to environmental conditions as well as lubricants and powder residue, two parts that separate several times during recoil are subject to a wide variety of contamination between them. As can be seen by study of the mechanism and it’s patent, the Remington-Walker trigger is not self cleaning and it is housed within steel walls, but the unit is open at the top where the greater amount of such contamination is present.
The top of the Remington trigger housings are totally exposed in the rear tang of the rifle. At each operation of the sear, debris is ‘pumped’ into the housing. (Look at the top of the bolt release to see the stuff that comes all the way through the trigger.) Each operation of the bolt pushes more material into the vicinity of the sear opening. Remington-Walker triggers do get dirty and they can’t be easily cleaned without disassembly. Disassembly of the trigger breaks the factory seals.
The connector is, in reality, a separate flexibly mounted trigger. It cannot be felt by the shooter. The position of the connector can be different than the position of the trigger without the shooter knowing it. The shooter can not know the position of the connector, it’s out of his control and out of his view.
Practical gunsmith’s test of the Remington-Walker trigger—
Over the decades, standardized tests of Remington-Walker triggers have been developed to show a trigger that is prone to repeatable failures. These tests are simple, non destructive and can be very useful in identifying triggers that are demonstrably bad. It must be kept in mind that just because a trigger passes these test does NOT mean it’s safe. As seen by the design, the defect is inherently present in the trigger. It just doesn’t always fail. The shooter has no way of knowing when that failure might occur.
“Tricking” a trigger is done by carefully placing the safety lever in the ‘null’ position between fire and safe. Some guns won’t perch there, some will. With the safety perched between detents, pull the trigger and release very slowly. Pay careful attention to a tiny ‘click’ as the trigger is pulled. If it’s there, the gun will likely fire when the safe is pushed to OFF. Try that test several times and flip the safe off after each careful pull. Tricking is a way to determine if the lift of the safety cam is enough to clear the top of the connector in half-way position.
“Screw driver Test” is done with the gun cocked and ON safe. Push against the bottom of the connector, seen just in front of the bolt release leaf, with a screwdriver or punch and then push the safety to OFF. If the connector is sloppy on the trigger it will over ride the front of the sear so that the sear has no support when the safety is released. Guns that fail this test can sometimes fire on safety release after suffering common vibrations in a vehicle or on horseback.
“Sear lift test” assures the safety cam raises the sear high enough to not drag on the connector when on safe. Place the rifle safety ON and pull the trigger several times and release it slowly. If the connector drags on the bottom of the sear it can’t get back under the sear to catch it as the safety is flipped OFF.
Guns that have been dropped while on safe can develop this failure by denting the safety cam.
Trigger adjustments–
Just be aware that the clear to cloudy-yellow sealer found on Remington-Walker screws is put there by assemblers as the trigger undergoes final adjustment at the factory. When that sealer is removed, the company has a certain amount of deniability and ‘blame’ is transferred to the one doing the adjusting. (I know, I know!!) I’ve adjusted Remington triggers for forty years because so many are useless without it. Just be aware of the liability involved and how it works so it’s not made (much) worse by alterations of the surfaces or excessive adjustments.
Trigger repair—
The Remington-Walker can be made into a solid trigger system without using the connector by replacing the trigger and connector by an aftermarket or shop-made trigger, OR, the connector can be epoxied to the body of the trigger as long as one thing is done very carefully; The rear of the connector has to be ground square after the epoxy sets, BUT the actual disengaging corner of the connector has to be left in its’ original position relative to the center line of the trigger pivot pin. It takes a precision grinder and fixture to do it right. Do it wrong and the trigger is even more unpredictable and could become very dangerous. Without grinding the rear of the connector square, the sear hitting the angle will soon break the epoxy bond and the trigger is worse than before.
In the coming weeks, the Remington-Walker trigger is going to be in the news. Those that know guns will be answering questions from those that don’t. Please have the facts and please, please just look at the mechanism and the patent and understand how it all works and it’s then very easy to see how it also fails.
Another article found today:
CNBC PRESENTS “REMINGTON UNDER FIRE: A CNBC INVESTIGATION”
CNBC ORIGINAL TAKES VIEWERS INSIDE A 10-MONTH INVESTIGATION OF THE WORLD’S MOST POPULAR HUNTING RIFLE AND EXAMINES WHETHER A COMPANY HAS GONE TOO FAR IN PROTECTING ITS SIGNATURE PRODUCT
One-Hour Documentary Reported by CNBC’s Senior Correspondent Scott Cohn to Premiere on CNBC on Wednesday, October 20th at 9PM ET/PT
ENGLEWOOD CLIFFS, N.J., October 11, 2010—The Remington Model 700-series rifle —with more than five million sold—is one of the world’s most popular firearms. Famous for its accuracy, the rifle is now the target of a series of lawsuits alleging that it is unsafe and susceptible to firing accidentally. Remington insists its rifle is safe, trusted, and reliable, though a trail of death and serious injury dating back decades has prompted critics to ask whether this iconic American company has compromised safety in the name of profits, and gone too far in trying to protect its signature product. CNBC, First in Business Worldwide, takes viewers inside its 10-month investigation.
On Wednesday, October 20th at 9PM ET/PT, CNBC presents, “Remington Under Fire: A CNBC Investigation,” reported by award-winning Senior Correspondent Scott Cohn. This CNBC Original documentary examines allegations that the Remington Model 700- series hunting rifle is prone to firing without pulling the trigger, and that its manufacturer, Remington, has been aware of this concern for almost 60 years. Dozens of deaths, scores of injuries, and more than a thousand customer complaints have been linked to the alleged problem. The story is told through former corporate insiders and the company’s own internal documents. Cohn speaks to several gun owners who suffered devastating consequences as a result of the 700-series rifle, including Rich Barber, a father who has devoted his life to finding answers about the tragic death of his nine-year-old son.
The CNBC investigation took Cohn from Florida to Alaska; along the way, he uncovered the existence of thousands of complaints and more than 75 lawsuits, all involving inadvertent discharges of the rifle. Cohn spoke with dozens of avid hunters and gun owners, as well as police snipers and military personnel, who say they’ve experienced this problem—the very problem Rich Barber says resulted in the death of his young son. Remington has consistently maintained that the deaths, injuries, and inadvertent discharges involving its bolt-action 700-series rifles have been the result of poor maintenance, unsafe handling, or improper modification of the trigger by the customer.
Nearly four of every ten bolt-action rifles sold is a Remington, and sales of the 700- series have brought the company hundreds of millions over the last six decades. CNBC tracks down 98-year-old Mike Walker, the Remington engineer who designed the trigger for the Remington 700. For the first time, Walker tells his story. Walker’s internal company memos, obtained by CNBC, indicate that he repeatedly raised concerns, even after he retired from Remington, about the trigger system he designed. Other concerns were raised as well, including one from a Remington colleague who warned in a memo, “this situation can be very dangerous.” Walker proposed a relatively inexpensive solution, though Remington has never recalled the rifle, and insists it has no defect.
CNBC’s investigation found that Remington considered a “call back” of the 700 rifle, but decided against it. No one can order a gun manufacturer to recall a firearm; while federal regulators can order the recall of most consumer products – food, medicine, and even air rifles and crossbows – they do not have authority to impose a firearm recall. That leaves the responsibility for manufacturing and marketing a safe gun in the hands of individual companies like Remington.
Remington has responded to the numerous first-hand accounts of accidental firings by maintaining they are the result of poor maintenance and unsafe handling, often by inexperienced users. Remington officials declined to speak to CNBC for this documentary, instead offering comments in writing. Cohn speaks with a former Remington employee whose job involved dealing with customer complaints related to the 700-series rifle. He tells CNBC he was instructed not to acknowledge to these customers any problem with the rifle, and says if he had, he would have lost his job.
For more information including web extras and extended video clips, log onto Remington.cnbc.com.
Mitch Weitzner is the Senior Executive Producer of “Remington Under Fire: A CNBC Investigation.” Jeff Pohlman is the Senior Producer. Ray Borelli is the Vice President of Strategic Research, Scheduling and Long Form Programming.
CNBC’s “Remington Under Fire: A CNBC Investigation” will re-air on Wednesday, October 20th at 10PM ET/PT, Sunday, October 24th at 10PM ET, Thursday, October 28th at 8PM ET and 12AM ET, and Sunday, October 31st at 1AM ET.
Let’s see, who do I trust — a notorious anti-gun NBC network or the 700 in my cabinet? I’ll stick with my 700 — it’s never let me down!
If NBC were burning, I’d certainly run to get my video camera!
I feel same as you do in many respects. At the end of the day there may be some questions about this trigger assembly and why it’s made the way it is and whether it’s likely that the rifle will fire without a trigger pull under adverse conditions.
I posted this because I think it’s an excellent example of a case that will test our ‘metal’. Will we allow the technician to step forward and analyze the assembly, or will we call BS and turn our backs on it? Is the design good enough if it functions properly 99.999 percent of the time, or when the safety mechanisim is perfectly clean?
IF America must suffer through another 9/11 terrorist attack, my greiving process would be far shorter if it happened in a big tent full of main stream media commentators. We all know they hate our freedoms as much as our enemies, and up to this point, I have the right to share that view.
After watching this coverage on CNBC, I think it was fairly damming, and it’s a reminder to all of us gun enthusiasts that we are members of the self policing force that helps to protect our second admendment rights. WE need to be the ones that come down on manufacturers that don’t make a reasonable effort to fix a problem. Adding Walker’s trigger block WAS the correct thing to do in my opinion. Of course, I don’t expect everyone to see it that way.
I do web work for Remington and wanted to make sure you are aware of our response to this. Check out http://www.remington700.tv
Hope this clears up any confusion out there.
Thanks,
Laura
Thank you Laura,
Outside of NPR, we Americans enjoy the freedom of hearing both sides of the argument. I appreciate your efforts to find us and share same.
George B.
I have been teaching my son with a BB gun ever since he was 9. He’s 12 now. I teach him “ALWAYS point the weapon down range”. NEVER point the weapon in the direction of anyone NO MATTER WHAT. He has rebutted my mandates, and I asked him, would you trust your life (eye ball in this case) to that safety switch? Do you trust the mechanical trigger mechanism?
I’m sad for the people that have lost their life. I hope my son learns from my chastising when he points a BB gun the wrong way. I will someday take him out with a real gun when I’m ABSOLUTLY sure he’s learned the STRICT down-range rule.
I hope this Remington issue doesn’t derail our second amendment rights.
I recorded the CNBC show and I will watch it.
Thanks George
i am no gun nut, however i own a couple and shoot once in a blue moon
i too watched the cnbc report “remington under fire”
it seems to me that anyone that denies there is an issue with his model 700, turns his back and refuses to at least consider the possibility that the design is seriously flawed, should something bad happen he (the owner) is equally liable for the outcome.
if a car company was found to have a serious issue with something like the brakes, and i have been made aware of the issue and choose to drive through a school zone, the brakes fail and i kill a kid in the crosswalks, i would be found to have a share in the liability. you can bet on that!
any owner of a model 700 that has the walker trigger in question that refuses to take serious the problem associated with its safety is not being responsible in my opinion.
of course this is my opinion and i hope i don’t get fired for it.
bob g
Permit me to refine the statement: “no firearm should discharge unless you pull the trigger” to include, “and the front site post rest both vertically and horizontally on the Perp, game or target”.
Mrs. Barber thought she was pointing her rifle in a safe direction when it suddenly discharged when she toughed the bolt to unload it. She was unaware that when she turned her back on her children, her son slid off his mount and ran around the back of the trailer.
Is there really any “safe” direction to point a rifle when you don’t know when it might discharge? While the rule might appear to work, sometimes there simply is no safe direction to point a rifle that can be lethal at 2000 yards. Imagine a police SWAT team serving a drug bust in a crowded apartment. One of the perps drops a loaded 700 rifle and is taken into custody.
What’s a safe direction in a crowded apartment building to point such a rifle when you don’t know when it might discharge?
A rifle simply MUST have a safety that prevents the firing pin from striking the primer. Walker himself took issue with characterizing his design as a “safety.” The simpler that safety is, the better. That is the crux of this issue. And slick adverts impugning the reputations of everyone who brings up the safety issue are not going to change it.
George has said elsewhere on this forum, “If it isn’t part of the design, it can’t fail.” A corollary to that should be, “The more parts there are in a design, the more susceptible to failure it is.”
Quinn
I was once called as an expert witness in a jury trial, the key evidence was a software program that had repeatedly identified the individual on trial as being the person who threatened to rape and or kill a young woman. I was asked about this program and the possiblity it had fingered the wrong man? My response was “I am as sure of this as I am the fact the sun will be up tomorrow”, (and I was),He was convicted 🙂
With that said, I’d like to understand why the Mauser 98 and maybe other rifle safety designs are not or could not be as safe as I think they can be? Is it not practical to engineer a safe safety, and why do they call it a safety? Certainly, we all know not to intentionally point a firearm at anyone, but who would say that’s easy to do? Perhaps it’s possible to compare the safety complaints of the Remington 700 against the Mauser 93 and 98 rifles?
Of course we all know how to make the worst possible safety, allow the Government to design it. If it looked like Congress, Fannie Mae, Social Security, the DOE, EPA, CARB, or countless other government entities, we’d never even bother with the selector!
George B.,
You don’t provide very much information when you mention your software testimony, but as a retired software engineer, I’d personally be very wary of trying to convict someone of a serious crime based upon the output of a complex software system. My experience with complex software systems is that no one can be totally sure of what the results will be unless they were the only coder and they’ve run the identical inputs through to the desired outputs many times. Any change in the inputs or code or user actions renders the system unstable, if it’s really complex.
Maybe your software wasn’t that complex, maybe the inputs and outputs were well understood. Many times I had a user show me a report, and ask now it could be that way when they know the inputs should have created a different output. After much analysis of data and code, we would find that an unexpected or contradictory input or
unusual user action caused a different output, and more code was needed to handle this exception, or to control user inputs, or whatever. Just sayin’ I wouldn’t like to testify in a capital trial about my software team’s systems’ output.
As someone who participated in 2 different jury trials in capitol murder cases, and was foreman of one of the two juries (they wanted me to do it again in the 2nd one, but I bowed out, said once was enough for anyone! I live in a very small and rural county, and many of us in the 2nd jury in December had been on one in October. That’s how the little wooden balls fall during jury selection. ) there is a lot of stress in deciding someone’s fate like that.
The analysis of the trigger mechanism above is very interesting. If accurate (I don’t know enough about rifle trigger mechanisms to have a valid opinion) Remington may be in big trouble. Esp. looking at some of the paperwork!
I’ve just bought a CCW pistol, a Targus .40 – must of my hands-on experience has been with revolvers. I’m trying to learn what is safe in carrying this pistol, which is a double-action hammerless automatic. You can see a red indicator when a round is chambered, and a different red indicator when cocked, which isn’t very meaningful as it is double-action.
When you raise the safety lever past it’s “safe” detent, you uncock the pistol, and it won’t (isn’t supposed to) fire when you do this. But then you can fire the pistol just by pulling the trigger, if the safety lever isn’t up and engaged. Part of me wants to have a round chambered in my carry weapon, so that I can be ready to fire just by lowering the safety lever. Part of me wonders how likely the pistol is to go off with a chambered round, even if the hammer isn’t “cocked”.
I worry about carrying, it’s a pretty big responsibility, there are lots of laws that vary from one jurisdiction to another, even when two states enjoy reciprocal CCW permit relationships. You’re also responsible for carrying the weapon safely at all times.
When you dismantle the pistol for cleaning, you basically get 3 pieces, The barrel, the bottom, which is black plastic, housing part of the the trigger mechanism, the grip and magazine, and the top. Stainless steel, and with all the tiny watchmaker parts that make the thing work. Not to be dismantled unless you are a gunsmith. So I can clean the “user-serviceable” parts, but can not see how the safety lever works, inside that slide.
Now I’m worried. When is it safe?
JR in WV
JR,
I didn’t go into detail about the case I testified on for a reason.. it’s NOT the topic. It’s an example of how certain you should be and how much confidence you should have before you help convict someone on such evidence. I would bet my life any day on the accuracy of my testimony in that particular case… period. As for Software Engineers, we know the majority of the code written is sloppy and bloated. Most people my age have seen a lot of junk code, we are old enough to know how it got to market.. it’s very difficult to totally debug stuff AND make a profit, stuff normally gets released early and the one who waits till all is right usually fails in the market place. Same for hardware. The IBM clone and the OS deployed were junk compared to other computers and Operating systems of the era. Still IBM won the war. In other markets, good code and hardware IS a matter of life and death. In these applications we expect high levels of redundancy, diverse routing between multiple processors (all doing the same job with a supervisor expecting all results to match. In some cases that supervisor has the privilege to test the processors on the fly and quarantine a processor that produces an unexpected result. multiple busses between redundant periphery are used and methods to ID busses in trouble and place them out of service (on the fly). We see these designs in fly by wire aircraft, a lot of military stuff, and communications processors. I don’t find fault with your opinion of stuff you worked on.. you know it best I’m sure, but others do write reliable code and deploy highly reliable and redundant systems which many lives depend on daily. On one precessor we had, there was a ‘wrmi’ bit on the buss. It was just one more level of certainty. wrmi= “We really mean it”
Perhaps I have read you wrong, but if you are as uncertain about code as you mentioned, I am sure you do not fly. When we look at modern aircraft, most everything is now ‘fly by wire’, there’s no longer cables between the cockpit and control surfaces. Of course the probability of failure is in the billions to one, and what I find most interesting is the people who worry most about these things buy lottery tickets, smoke, drive automobiles and do other things where the odds of having a bad outcome are far greater.
As for a gun safety. I’d bet on a ‘safety’ that had a half inch thick steel strap (block) and two generous air spaces between the primer and the firing pin when the safety was on. Of course I’d want to test it 30 million times first, and that’s what a processor and periphery are good at.
George B.
response to JR in WV “but as a retired software engineer, I’d personally be very wary of trying to convict someone of a serious crime based upon the output of a complex software system.”
JR, some Software Engineers spend their time writing crap, and it’s a necessity IF your company will survive. You need get to the marketplace before it’s right, and then fix the bugs later, seems that’s the standard today for some software.
I was making reference to far more critical software efforts.. with multiple levels of redundancy, error checking, and more. In this case a number of separate trap events fingered this guy and all identifying him. Multiple times. I’d bet my life, my family, and all my friends lives too.
Do you fly? It’s all fly by wire now, I’m no where’s near as confident in fly by wire as the system I reference, but I still fly.. do you???
George
04/12/12 It may be time to note the date of my post, and do a google search today.. no doubt, the Attorneys chasing after potential clients are NOW as thick as fleas on a neglected dog!
We need ask.. what came first, the fleas or this long neglected dog? We need review the comments made here and elsewhere, do some remind you of Barney Frank, or perhaps Nancy Pelosi? Or how about Harry Reid who refused to even discuss holding a conversation about having a budget when we are spending ourselves into a deep and dark hole.
Nero fiddled while Rome burned, but no one learned a dammed thing.
I just found this article, and I want people to think about how the author describes the trigger being in the correct position, uncocked, and the connector being in the cocked position. This would create an interference condition between the connector and the trigger.
The trigger stop screw is designed to stop the trigger when interference between the sear and the trigger ceases. Yes, someone can back out the stop screw a bit and create a situation where the trigger continues moving past release. I’m sure some people do, for whatever reason. The trigger is designed to stop at release.
I could further, explaining the dynamics or motion of the entire system. I’m sure this article and the NBC and CBS railroading of Remington sounds really good to people who don’t really understand what they are talking about, but, to me, it is a bunch of bogus tripe.
And the attorneys actually didn’t argue any of these defects, they argued that the defect is that the mechanism, when improperly maintained, can clog with rust and debries. Kind of like the bolt recess in an M-16 or AR-15 clogs with crap and causes the bolt to fail to rotate into position, jamming the weapon. Oh yeah, I bet the same firearm enthusiasts who claim the Remington trigger sucks claim the AR rotating bolt is as reliable as an AK or an M1. The truth is, both operate as designed when maintained.
John, I greatly appreciate your post, I do have a dog in the fight, as I loath anti gunners. I think it’s a very interesting mechanisim (this trigger assembly). And it’s been a year since I looked at it, and I may never look at it that hard again, not that it matters as I am no gun expert by any measure. My point is this is a hard one.. ‘WE’ don’t want to find any defect in that trigger. In the end, It could be entirely about money, it often is… I think it was last week that Jack Belk released a book he wrote on the Remington trigger assembly.. I think it’s on Amazon.
update: 01/12/15 I am pleased to tell you I read Jack’s book, and I am so glad I did, it is full of learning, and I’m a little ‘red-faced’ thinking abotu what I didn’t know that I should have known!